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1 Minimax Estimation

1.1 Bayes risk

If we have a model P = {Pθ : θ ∈ Θ}, then we have a few main ideas for choosing an
estimator:

1. Constrain the choice of estimator, e.g. unbiased estimation

2. Minimize average-case risk, i.e. Bayes estimation.

In Bayes estimation, we have a prior Λ with Λ(Θ) = 1 (here, Θ is the parameter space).
The Bayes estimator (if it exists) minimizes

R(θ; δ) = E[L(θ; δ(X))].

Definition 1.1. The Bayes risk for the problem Λ,P is

rΛ = inf
δ

∫
R(θ, δ) dΛ(θ).

Example 1.1 (HW 6 Problem 1(c), n=2). In this example, there are only two possible
values of θ, θ1 and θ2. Then we can plot r(δ) = (R(θ1; δ), R(θ2; δ)).

1



This is a convex set. The Bayes estimators are the ones on the frontier of this set, the
points where the box to the lower left of the point is not in the set. Each vector λ which
is normal to this boundary corresponds to a prior.

1.2 Minimax risk, minimax estimators, and least favorable priors

The idea of the minimax risk is to minimize

min
δ

sup
θ
R(θ; δ).

Definition 1.2. The minimal achievable sup-risk is called the minimax risk,

r∗ = inf
δ

sup
θ
R(θ, δ),

of the problem. An estimator δ∗ is minimax if it achieves

sup
θ
R(θ, δ∗) = r∗.

There is a game theoretic interpretation: Imagine we pick our δ first, and then nature
tries to maximize the risk (i.e. choosing θ adversarially). The interpretation of Bayes
estimation is that nature picks θ (via a prior), and then we try to minimize the risk.

For any proper prior Λ, the Bayes risk is

rΛ = inf
δ

∫
R(θ; δ) dΛ(θ)

≤ inf
δ

sup
θ
R(θ; δ)

= r∗.

Here is the strategy that nature will pick if it can go first.

Definition 1.3. The least favorable (LF) prior is the prior distribution Λ∗ that gives
the best lower bound:

rΛ∗ = sup
Λ
rΛ.

We know that
sup
θ
R(θ; δ) ≥ r∗ ≥ rΛ∗ ≥ rΛ

for any prior Λ. We hope that we can find a prior and an estimator that collapse all these
inequalities into equalities.

Theorem 1.1. If rΛ = supθ R(θ; δΛ), where δΛ is Bayes for Λ, then
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(a) δΛ is minimax.

(b) If δΛ is the unique Bayes estimator (up to a.s. equality) for Λ, then δΛ is the unique
minimax estimator.

(c) Λ is the least favorable prior.

Proof.

(a) For any other δ,

sup
θ
R(θ; δ) ≥

∫
R(θ; δ) dΛ(θ)

≥
∫
R(θ; δΛ) dΛ(θ) (∗)

= rΛ

= sup
θ
R(θ; δΛ).

(b) Replace ≥ with > in the step (∗).

(c) If Λ̃ is any other prior, then

r
Λ̃

= inf
δ

∫
R(θ; δ) dΛ̃

≤
∫
R(θ; δΛ) dΛ̃

≤ sup
θ
R(θ; δΛ)

= rΛ.

Here are sufficient conditions for a minimax estimator:

1. δ is a Bayes estimator whose risk function is constant.
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2. δΛ is a Bayes estimator with 1 = Λ({θ : R(θ; δΛ) = maxζ R(ζ; δΛ)}).

In our picture of Bayes estimation, a 45 degree line denotes the points corresponding to
estimators with constant risk. The least favorable prior is the corresponding normal vector
at the point where this line reaches the boundary of possible risks.

Example 1.2 (Binomial). Suppose X ∼ Binom(n, θ) with θ ∈ [0, 1]. We want to estimate
θ using the MSE for our risk. Try θ ∼ Beta(α, β), so the Bayes estimator will be

δα,β(X) =
α+X

α+ β + n
.
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Then the Bayes risk is

MSE(θ; δα,β) = Eθ

[(
α+X

α+ β + n
−Θ

)2
]

∝θ [(α+ β)2 − n]θ2 + [n− 2α(α+ β)]θ + α2.

To get a minimax estimator, we want to pick α and β to make this constant in θ. So we
set (α+ β)2 = n and 2α(α+ β) = n and get α = β =

√
n/2. So Beta(

√
n/2,

√
n/2) is the

least favorable prior.
This is not such a great estimator, however, since it put a lot of weight around 1/2. So

the pessimistic perspective of minimax estimation can lead us astray for some values of θ.

1.3 Least favorable sequences of priors

Example 1.3. Suppose X ∼ N(θ, 1), and we are estimating θ with the MSE risk. To find
the least favorable prior, we would want a flat prior, but this does not give a probability
distribution. So we can take, say, Λn = N(0, n) as a sequence of priors.

Definition 1.4. As sequence Λ1,Λ2, . . . of priors is least favorable if rΛn → supΛ rΛ.

Theorem 1.2. Suppose Λ1,Λ2, . . . is any sequence of priors, and suppose δ satisfies

sup
θ
R(θ; δ) = lim

n
rΛn .

Then

(a) δ is minimax.

(b) Λ1,Λ2, . . . is least favorable.

Proof.

(a) Suppose δ̃ is another estimator. Then for all n,

sup
θ
R(θ; δ̃) ≥

∫
R(θ; δ̃) dΛn

≥ rΛn .

Then
sup
θ
R(θ; δ̃) ≥ lim

n
rΛn = sup

θ
R(θ; δ).
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(b) If Λ is a prior, then

rΛ ≤
∫
R(θ; δ) dΛ

≤ sup
Θ
R(θ; δ)

= lim
n
rΛn .

So we get
lim
n
rΛn = sup

Λ
rΛ.

Remark 1.1. If we find the Bayes risk, then we get a lower bound on the minimax risk,
and if we provide an estimator, we can get an upper bound on the minimax risk. If these
are close, this gives a good estimate of the hardness of a problem.

This is not a very useful measure if your parameter space has some bad corner which
you never encounter in practice.

1.4 Bayes estimation example: the Gaussian sequence model

Here is an example of Bayes estimation we did not have time to cover before:

Example 1.4 (Gaussian sequence model). Suppose X ∼ Nd(θ, Id) for θ ∈ Rd. Then the
Jeffreys prior on θ is flat. The objective Bayes estimator for Θ is X because the posterior
distribution is

λ(θ | X) ∝θ pθ(X) ∝θ e−‖X−θ‖
2/2 ∝θ Nd(X, Id).

What about ρ2 = ‖Θ‖2? Since Θi ∼ N(Xi, 1), E[Θ2
i | Xi] = 1 +X2

i , so

ρ̂2 = E[‖Θ‖2 | X] = d+ ‖X‖2.

The UMVU estimator is ρ̂2
UMVU = ‖X‖2 − d because

Eθ[‖X‖2] = d+ ‖θ‖2.

Finally, we have the MLE

ρ̂2
MLE = ‖X‖2.

Which one of these estimators is the best? The UMVU estimator is inadmissible because
it is negative, but we may not want to rule it out. These all have the same variance, d,
and the UMVU estimator has no bias. This serves as a cautionary tale about constructing
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objective priors. Suppose we took the prior Θ ∼ N(0, n), so ρ2 ∼ nχ2
d. Then picking an

“objective prior” may not produce a good result. In this case, λ(ρ2) ∝ρ2 (ρ2)(d−1)/2.
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